Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 899: 165650, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474076

RESUMO

Earth observation satellites have facilitated the quantification of how vegetation phenology responds to climate warming on large scales. However, satellite image pixels may contain a mixture of multiple vegetation types or species with diverse phenological responses to climate variability. It is unclear how these mixed pixels affect the statistical relationships between satellite-derived vegetation phenology and climate factors. Here, we aim to investigate the impacts of percent tree cover (PTC), a measure of mixed pixel, on the statistical relationships between satellite-derived vegetation greenup date (GUD) and spring air temperature across Eurasian boreal forests at a 0.05° spatial resolution. We estimated GUD using Moderate Resolution Imaging Spectroradiometer (MODIS) time series data. The responses of GUD to interannual variation in spring temperature (April to May) during 2001-2020 were characterized by correlation coefficient (RTAM) and sensitivity (STAM). We then evaluated the local impacts of PTC on spatial variations in RTAM and STAM using partial correlation analysis through spatial moving windows. Our results indicate that, for most areas, forests with higher PTC were associated with stronger RTAM and STAM. Moreover, PTC had stronger local impacts on RTAM and STAM than mean annual temperature and temperature seasonality for 37.3% and 27.4% of the moving windows, respectively. These impacts were spatially varying and different among forest types. Specifically, deciduous broadleaf forests and deciduous needleleaf forests tend to have a higher proportion of these impacts compared to other forest types. Our findings demonstrate the nonnegligible effects of PTC on the statistical responses of GUD to temperature variability at coarse spatial resolution (0.05°) across Eurasian boreal forests.


Assuntos
Taiga , Árvores , Temperatura , Estações do Ano , Florestas , Mudança Climática , Ecossistema
2.
Glob Chang Biol ; 28(24): 7186-7204, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36114727

RESUMO

Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.


Assuntos
Mudança Climática , Ecossistema , Estações do Ano , Carbono , Água
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(5): 1352-6, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25095437

RESUMO

The present study aims to explore capability of different methods for winter wheat leaf area index inversion by integrating remote sensing image and synchronization field experiment. There were four kinds of LAI inversion methods discussed, specifically, support vector machines (SVM), discrete wavelet transform (DWT), continuous wavelet transform (CWT) and principal component analysis (PCA). Winter wheat LAI inversion models were established with the above four methods respectively, then estimation precision for each model was analyzed. Both discrete wavelet transform method and principal component analysis method are based on feature extraction and data dimension reduction, and multivariate regression models of the two methods showed comparable accuracy (R2 of DWT and PCA model was 0. 697 1 and 0. 692 4 respectively; RMSE was 0. 605 8 and 0. 554 1 respectively). While the model based on continuous wavelet transform suffered the lowest accuracy and didn't seem to be qualified to inverse LAL It was indicated that the nonlinear regression model with support vector machines method is the most eligible model for estimating winter wheat LAI in the study area.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Modelos Teóricos , Análise de Componente Principal , Análise de Regressão , Tecnologia de Sensoriamento Remoto , Máquina de Vetores de Suporte , Análise de Ondaletas
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 489-93, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24822426

RESUMO

Leaf area index (LAI) is one of the most important parameters for evaluating winter wheat growth status and forecasting its yield. Hyperspectral remote sensing is a new technical approach that can be used to acquire the instant information of vegetation LAI at large scale. This study aims to explore the capability of least squares support vector machines (LS-SVM) method to winter wheat LAI estimation with hyperspectral data. After the compression of PHI airborne data with principal component analysis (PCA), the sample set based on the measured LAI data and hyperspectral reflectance data was established. Then the method of LS-SVM was developed respectively to estimate winter wheat LAI under four different conditions, to be specific, different plant type cultivars, different periods, different nitrogenous fertilizer and water conditions. Compared with traditional NDVI model estimation results, each experiment of LS-SVM model yielded higher determination coefficient as well as lower RMSE value, which meant that the LS-SVM method performed better than the NDVI method. In addition, NDVI model was unstable for winter wheat under the condition of different plant type cultivars, different nitrogenous fertilizer and different water, while the LS-SVM model showed good stability. Therefore, LS-SVM has high accuracy for learning and considerable universality for estimation of LAI of winter wheat under different conditions using hyperspectral data.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Análise dos Mínimos Quadrados , Modelos Teóricos , Nitrogênio , Plantas , Análise de Componente Principal , Máquina de Vetores de Suporte , Telemetria , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...